22 research outputs found

    Accelerated large-scale multiple sequence alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sequence alignment (MSA) is a fundamental analysis method used in bioinformatics and many comparative genomic applications. Prior MSA acceleration attempts with reconfigurable computing have only addressed the first stage of progressive alignment and consequently exhibit performance limitations according to Amdahl's Law. This work is the first known to accelerate the third stage of progressive alignment on reconfigurable hardware.</p> <p>Results</p> <p>We reduce subgroups of aligned sequences into discrete profiles before they are pairwise aligned on the accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been demonstrated on a large data set when compared to a 2.4 GHz Core2 processor.</p> <p>Conclusions</p> <p>Our parallel algorithm and architecture accelerates large-scale MSA with reconfigurable computing and allows researchers to solve the larger problems that confront biologists today. Program source is available from <url>http://dna.cs.byu.edu/msa/</url>.</p

    A Systematic Survey of Mini-Proteins in Bacteria and Archaea

    Get PDF
    BACKGROUND: Mini-proteins, defined as polypeptides containing no more than 100 amino acids, are ubiquitous in prokaryotes and eukaryotes. They play significant roles in various biological processes, and their regulatory functions gradually attract the attentions of scientists. However, the functions of the majority of mini-proteins are still largely unknown due to the constraints of experimental methods and bioinformatic analysis. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we extracted a total of 180,879 mini-proteins from the annotations of 532 sequenced genomes, including 491 strains of Bacteria and 41 strains of Archaea. The average proportion of mini-proteins among all genomic proteins is approximately 10.99%, but different strains exhibit remarkable fluctuations. These mini-proteins display two notable characteristics. First, the majority are species-specific proteins with an average proportion of 58.79% among six representative phyla. Second, an even larger proportion (70.03% among all strains) is hypothetical proteins. However, a fraction of highly conserved hypothetical proteins potentially play crucial roles in organisms. Among mini-proteins with known functions, it seems that regulatory and metabolic proteins are more abundant than essential structural proteins. Furthermore, domains in mini-proteins seem to have greater distributions in Bacteria than Eukarya. Analysis of the evolutionary progression of these domains reveals that they have diverged to new patterns from a single ancestor. CONCLUSIONS/SIGNIFICANCE: Mini-proteins are ubiquitous in bacterial and archaeal species and play significant roles in various functions. The number of mini-proteins in each genome displays remarkable fluctuation, likely resulting from the differential selective pressures that reflect the respective life-styles of the organisms. The answers to many questions surrounding mini-proteins remain elusive and need to be resolved experimentally

    Distribution and Molecular Evolution of Bacillus anthracis Genotypes in Namibia

    Get PDF
    The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983–2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological relationships

    Unique Seminal Quality in the South African Cheetah and a Comparative Evolution in the Domestic Cat

    No full text
    Analysis of 40 semen samples collected by electroejaculation from 18 cheetahs revealed no major differences in seminal traits among Transvaal, South West (Namibia) or hybrid (Transvaal X South West) males. However, mean spermatozoal concentration (14.5 X 106 spermatozoa/ml of ejaculate) and percent motility (54.0%) were less in cheetahs than in domestic cats (147.0 X 106 spermatozoa/ml of ejaculate, 77.0% motility) subjected to the same electroejaculation regimen. On the average, cheetah ejaculates contained 71.0% morphologically abnormal spermatozoa compared to 29.1% aberrant spermatozoal forms in the domestic cat. These results indicate that seminal characteristics in the cheetah are markedly inferior compared to the domestic cat, particularly with respect to the incidence of pleiomorphic spermatozoa. Because a recent parallel study demonstrates that the cheetah lacks genetic variation, it appears likely that spermatozoal abnormalities are a genetic consequence of genomic homozygosity characteristic of this endangered species
    corecore